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change is small and the shock can be treated as a simple wave to which either 
eq. (35) or (36) applies. In this approximation the interactions of shock waves 
and rarefactions can be calculated from eqs. (25) and (26). 

3. - Elementary wave interactions. 

Equations (32), (34), (35) and (36) uniquely define and limit the values 
of particle velocity, 1t, which can be achieved by simple shock or rarefaction 
from a given state (Po, Vo, uo). This limitation on states which can be reached 
in a single wave transition supplies a powerful tool for thinking about and 
calculating the fields of high-amplitude waves. The problem is transformed 
into a « hodograph » plane in which the variables are (u, p), (u, l), (r, s) or 
some equivalent set. We shall use u, P here because of continuity conditions 
on u and P at an interface or boundary. The significance of this choice will 
appear later. 

Various useful representations of a shock and of a rarefaction are shown 
in Fig. 4. In 4 a) is a cross-section of a half-space to which a pressure Pi 
was applied at t = 0 and released at t = to. The pressure profile at this par
ticular t > to is shown in 4 b) . It consists of a forward-facing shock, desig
nated 9"+, a region of uniform pressure PI and particle velocity u1 , and a 
rarefaction P4+. The notations 9" and P4 are introduced here to denote shock 
and rarefaction waves, respectively. Forward-facing waves are denoted by 
the subscript « + », backward-facing by « - ». In Fig. 4 c) the flow is shown 
in the (x, t) plane. Region I is the uniform initial state (Po, Vo , uo) with 
uo> O. The shock front, 9"+, has constant slope until the following rarefaction 
overtakes it, reducing its amplitude and velocity. Region II is the uniform 
state (Pl, u1 , Vl) behind the shock. Region III is the rarefaction P4+ in which 
pressure and particle velocity are diminishing. Region IV is again at the 
ambient pressure Po but volume and particle velocity now differ from Vo 
and uo• The path OAB is the trace of the half-space surface, sometimes called 
the « piston path », fJ. The dashed curve is the path of a single particle or 
mass element traversed successively by 9"+ and P4+. Figure 4 d) shows the 
wave process in the (p, V) plane. The initial shock compression is along the 
Rayleigh line to the state B on the Hugoniot. The rarefaction, assumed to 
be isentropic, expands the material along the dashed isentrope to the final 
state G(V~, Po, u~). In Fig. 4 e) the process is shown in the (p, u) plane. The 
straight line AB with slope dp jdu = (!o(D - uo) is the image of the Rayleigh 
line. The compressed state B lies on the image of the Hugoniot curve and 
the dashed curve BG is the image of the isentrope of Fig. 4 d). Because the 
shock process is entropic and because most materials have positive thermal 
expansion coefficients, the final state (u~, Po) is normally to the left of (uo, Po) 
for forward-facing waves. 
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Fig. 4. - Forward-facing rarefaction overtaking a shock. a) planes of constant phase 
in half-space; b) pressure profile, t > to; 0) (x-t) diagram; d) (p- V) diagram; 

e) (p u)-plane. 
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